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Stochastic Phase Lockings in a Relaxation Oscillator 
Forced by a Periodic Input with Additive Noise: 
A First-Passage-Time Approach 
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Noise effects on phase lockings in a system consisting of a piecewise-linear van 
der Pol relaxation oscillator driven by a periodic input are studied. The problem 
of finding the period of the oscillator is reduced to the first-passage-time 
problem of the Ornstein-Uhlenbeck process with time-varying boundary. The 
probability density functions of the first-passage time are used to define the 
operator which governs a transition of an input phase density after one cycle of 
the oscillator. Phase lockings in a stochastic sense are investigated on the basis 
of the density evolution by the operator. 

KEY W O R D S :  Additive noise; relaxation oscillation; van der Pol oscillator; 
first-passage time; stochastic phase locking; Ornstein-Uhlenbeck process. 

1. INTRODUCTION 

The  influence of  noise  on n o n l i n e a r  d y n a m i c a l  systems has been  an objec t  

of  intense inves t iga t ion ,  t~) and  the p h e n o m e n o n  of t rans i t ions  induced  by 

external  noise  has  led to a revival  of  interes t  in the role  of  f luc tua t ions  in 
physical  sys temsJ  2) F o r  instance,  in a mul t i s tab le  system which  possesses 

several  c o m p e t i n g  states of  local  stabil i ty,  noise  can  be respons ib le  for 

t rans i t ions  be tween  these states. Recent ly  "no i sy"  systems have  received 
cons iderab le  a t t e n t i o n  also wi th in  the con tex t  of  s tochas t ic  resonance ,  t3) 
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The van der Pol equation 

d2x dx 
dz2+#(x2-1)--~z+x=O ( # > 0 )  (1) 

provides a typical example of a nonlinear oscillator. The original appli- 
cation of the system described by van der Pol arose as a model in electric 
circuits, ~4~ but a wealth of examples similar to such a system can be found 
in a variety of fields. (s) If the parameter p in (1) is sufficiently large, the 
waveform exhibited by the van der Pol oscillator is nearly discontinuous 
and drastically different from those of sinusoidal oscillators. Such a discon- 
tinuous oscillation is called a relaxation oscillationJ 6J 

Numerous studies on forced nonlinear oscillations, including the van 
der Pol equation, ~s) have been performedJ 7~ If the amplitude of the external 
force is sufficiently large, the forced oscillator is entrained, or phase-locked, 
to the external force. As the period and amplitude of the external force are 
changed, various patterns of m:n phase lockings (in which the forced 
oscillator runs n cycles for each m cycles of the external force) and chaotic 
behavior appear. 

Grasman and Roerdink 191 analyzed the van der Pol relaxation oscillator 
with additive noise. As they pointed out, if the parameter/~ in (1) tends to 
infinity, the problem of examining the period of the system reduces to the 
analysis of the time necessary for a one-dimensional stochastic process to 
reach a boundary for the first time; hence, it is appropriate to talk of a 
first-passage-time approach. Although an explicit solution to such problem 
has not yet been obtained, an asymptotic evaluation for small noise 
intensity has been givenJ 9~ To check this result, the above-mentioned 
authors also solved the stochastic differential equations numerically 
and computed the distribution of the interjump time, which is half of the 
period. 

In this paper, we extend the first-passage-time approach ~9~ to analyze 
the system modeled by a piecewise-linear van der Pol oscillator forced by a 
sinusoidal input with additive noise. A transformation of the system 
variables leads to an Ornstein-Uhlenbeck (OU) process with a time- 
varying boundary. Using densities of the input phase, we define an operator 
which governs the transition of the density after one cycle of the oscillator. 
We connect the phase locking in a stochastic sense with asymptotic behavior 
of the density evolution. 
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2. PIECEWISE-LINEAR RELAXATION OSCILLATOR 

Using Li6nard's transformation 

y=a #(xZ-1)dx - x  (2) 

and after the change of time scale 

T = t#, /~ = 1/~v/~ (3) 

we can rewrite Eq. (1) as the system of first-order differential equations 

8 2  = X - -  X 3 / 3  q- y (4a) 

)~ = - x  (4b) 

where a dot denotes time derivative with respect to t. Changing the 
right-hand side of Eq. (4a) into a piecewise-linear function, we obtain the 
piecewise-linear van der Pol oscillator described by 

! - X - 5 / 3  ( x < - l ,  reg ionl )  

~2 =, + 2x/3 (Ix[ ~< 1, region 2) (5a) 

- x +  5/3 ( x >  1, region 3) 

= F(x, y) 

fi = - x  (5b) 

Figure i shows the limit cycle of Eq. (5) in the x-y phase plane with an 
N-shaped x-nullcline (2 = 0) and a linear y-nullcline ( f  = 0). The local min- 
imum B = ( 1 , - 2 / 3 )  and maximum D = ( - 1 , 2 / 3 )  of the x-nullcline 
F(x, y) = 0 of Eq. (5) are the same as those of the x-nullcline of Eq. (4). 

In the following, we shall consider the limit as 8 ~ 0. Therefore, finding 
the solutions of Eq. (5) becomes a singular perturbation problem. However, 
we shall consider only the discontinuous (or singular) solutions of Eq. (5). 
Setting 8 = 0, we obtain a discontinuous approximation of Eq. (5): 

0 = F(x, y) (6a) 

= - x  (6b) 

Further, we define the set K as follows: 

K =  {(x, y)lF(x, y ) = 0 ,  OF(x, y)/Ox<O} (7) 
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re  ion  l re  o n 2  re  i o n 3  

Fig. 1. The limit cycle (the closed trajectory ABCD) of the piecewise-linear relaxation 
oscillator (5) in the x-y phase plane, illustrated with an N-shaped x-nullcline (.~:=0) and a 
linear y-nullcline (9 = 0). The parameter is set to e = 0.001. The vector field, shown by arrows, 
is almost horizontal. If a small perturbation in the horizontal direction of the phase plane 
displaces a state point from the limit cycle, the state point will immediately return to the limit 
cycle horizontally because of the large component of the vector field in the x direction. The 
regions x < - 1 ,  Ixl ~< 1, and x > l  are called regions i, 2, and 3, respectively. The branches 
of the x-nullcline are denoted by H_ in region 1 and by H+ in region 3. 

For simplicity, the two semiinfinite lines included in K will be denoted 
as branches H+ and H _ ;  hence, x = y + 5 / 3 = - H + ( y )  (region3) and 
x = y - 5/3 -- H_  (y) (region 1 ), which are the local solutions of F(x, y) = O. 
From Eq. (6), we can obtain a singular solution which approximates the 
exact solution of Eq. (5). Let the state point (x(t), y(t))  of the system (5) 
start at time zero in an initial point (x(0), y(0)) in the x-y  phase plane. If 
the initial point is not in the set K, the state point makes an instantaneous 
jump to a point (xr, y(0)) on that branch [ x = H + ( y )  or x = H  (y)]. 
After the jump the state point proceeds clockwise along one branch until 
it reaches the point B or D; then, it leaves the branch by an instantaneous 
jump to the point C -  = ( - 7 / 3 ,  - 2 / 3 )  or A - (7/3, 2/3) located on the other 
branch. This means that the singular solution of the system can be 
described alternately by instantaneous jumps from one branch to the other 
and by interjump motions along them. 

Singular solutions approximate the exact solutions of Eq. (5) only on 
K. Figure 1 illustrates the closed trajectory ABCD of the singular solution 
and the direction of the vector field. If a small instantaneous perturbation 
in the x direction of the phase plane displaces a state point from the limit 
cycle, the state point will immediately return to it because the vector field 
in the x direction is very large. Hence, small instantaneous perturbations in 
the x direction do not affect the velocity of the state point along the 
x-nullcline F(x, y ) =  0. If a continuous perturbation such as a sinusoidal 
function is applied to the right-hand side of Eq. (5a), then the perturbation 
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moves the x-nullcline and thus affects the velocity along the x-nullcline. In 
the limit case of e =0,  however, the x-direction perturbation to Eq. (5a) 
can be converted to the y-direction perturbation to Eq. (5b), so that only 
the y-direction perturbations to Eq. (5b) will be considered in the present 
work. 

In order to calculate the period T, of the free oscillation, let the 
periodic solution start at time t = 0 at a point A. The time interval spent 
by the state point on the segment AB is given by 

;i ~ dx l n 7 - 1 n 3  (8) 
/3 X 

Because the x-nullcline IF(x, y ) = 0 ]  is a symmetric function, the state 
point spends the same amount of time on the segment CD. Therefore, the 
period To of the solution is 

f l ' dx 
To = - 2  - -  (9) 

/3 X 

The period To is an O(1) approximation of the period T~ of the exact 
solution. The more precise estimate 

T, = To+ O(e 2/3) (10) 

is given in the literature, m) An explicit formula for the singular solution 
x(t) with the initial condition x (0 )=7 /3  can also be easily obtained 
(n = I, 2,...): 

~ 7 / 3 e x p { - [ t - ( n - 1 ) T o ] } ,  ( n - 1 ) T o < . t < ( n - 1 / 2 ) T  o 
x ( t ) = ~ - 7 / 3 e x p { - [ t - ( n - 1 / 2 ) T o ] } ,  (n -1 /Z)  T o ~ t < n T o  

3. RELAXATION OSCILLATOR DRIVEN BY PERIODIC 
INPUTS WITH ADDIT IVE NOISE 

We analyze the system of stochastic differential equations 

e dX(t) = F(X(t), Y(t)) dt (1 la) 

dY(t)= {-X(t)+ V(t)} dr+6 dW(t) (11b) 

where, as customary, W(t) denotes the standard Wiener process and 6 is a 
positive parameter. The term 6 dW(t) represents an additive noise, which 
means that it is independent of the state variables of the system. The 
function V(t) in (1 lb) denotes the sinusoidal periodic input: 

V( t ) = M sin[ 2n( t/I + 0o)] (12) 
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where M, /, and 0o denote the amplitude, period, and initial phase of 
the input, respectively. A precise definition of "phase" will be given in 
Section 4. 

In the limit as the parameter e tends to zero, Eqs. (11) yield the 
reduced system 

dY_( t )={-H (Y_(t))+V(t)}dt+6dW(t) (regionl) (13a) 

dY+(t)= {-H+(Y+(t))+ V(t)} dt+6 dW(t) (region 3) (13b) 

where 

H• (y) = y + 5/3 (14) 

For e sufficiently small, the motion of a state point can be viewed as 
governed by Eq. (13a) in region 1 and by Eq. (13b) in region 3. Hence, the 
period of the oscillation equals the time spent by the state point on these 
regions. 

We shall first analyze the stochastic trajectories on the branch H+ in 
region 3. Let the state point start at time t = 0 at initial point A (see Fig. 1), 
viz. Y+(0)= y+ (-2/3) .  We consider the time interval T+ when the one- 
dimensional stochastic process Y+(t) reaches a boundary set at y =  y_ 
( -  -2/3)  for the first time after leaving the initial point y+.  This time 
interval is the random variable representing the first-passage time from 
state y + to state y_  : 

T+ =inf{t >0:  Y+(t)=y_ I Y+(0 )=y+  } 

Similarly, the time interval T is defined as follows: 

T_ = in f{ t>0 :  Y_(t)=y+ I Y_(0)= y_ } 

(15) 

(16) 

Therefore, the period T of the stochastically perturbed oscillator is given by 
the random variable 

T=  T+ + T (17) 

In order to eliminate the time dependence of the coefficients of the 
stochastic differential equations (13a) and (13b), we use the transformation 

y ' =  y -  exp(s -  t) V(s) ds (18a) 

t '=t (18b) 
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on the processes Y+(t) and Y_(t). The transformed processes Y'+(t) and 
Y'_(t) are governed by the following stochastic differential equations (see 
appendix): 

dY'_( t )= { - H _ ( Y ' _ ( t ) ) }  d t + 6  dW(t) (region 1) (19a) 

d Y + ( t ) = { - H + ( Y ' + ( t ) ) }  d t + 6  dW(t) (region 3) (19b) 

The constant boundaries y =  y_ and y =  y+ of Y+(t) and Y_(t)  are then 
changed into the time-varying boundaries y '  = L+(t)  and y' = L (t) for 
processes Y + ( t ) and Y'_ ( t ), where 

L •  v_- e x p ( s - t )  V(s)ds (20) 

Denoting by f •  (t; y • ) the first-passage-time probability density func- 
tions (pdf's) of processes Y• with the initial state Y• y• and by 
. f •177 the corresponding first-passage-time pdf's of the processes 
Y'• one has 

f • 1 7 7 1 7 7 1 7 7  dt = f • 1 7 7  (21) 

Equations (14) and (19) imply that Y'~(t) are the Ornstein-Uhlenbeck 
processes/tS~ Hence, the numerical procedure proposed by Buonocore 
et al. 1~21 can be implemented to compute the first-passage-time pdf's in the 
presence of time-dependent boundaries. This is based on the numerical 
solution of an integral equation satisfied by the first-passage-time pdf 
whose kernel is a continuous function. Hence, without need to resort to 
simulation algorithms, one can evaluate the unknown pdf's to an arbitrary 
degree of accuracy. 

4. S T O C H A S T I C  P H A S E  L O C K I N G  

Since the van der Pol oscillator was proposed, behaviors of the forced 
oscillator have been intensively investigated, c7~ It is well known that 
the deterministic system of a periodically forced oscillator exhibits the 
phenomenon of phase lockings. When a driving period 1is in the neighbor- 
hood of the period of the free oscillator, one may expect an entrained 
oscillation at the driving period; this is called a 1:1 phase locking. On 
the other hand, even though the period of the system is significantly dif- 
ferent from the driving period, phase lockings occur: the period of the 
system is entrained to a period which is an integral multiple or submultiple 

822/78/3-4-17 
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of the driving period. As the period and/or amplitude of the driver are 
varied, the driven oscillator may show an m : n  phase locking in which the 
driven oscillator reiterates the cycle n times while the driver oscillates 
repeatedly m times. 

In order to discuss phase lockings more precisely, let us define an 
input phase as 

z ( t ; O o ) = t / I + O  o ( m o d l )  (22) 

where 0o and I denote the initial phase and period of the input V(t)  defined 
by Eq. (12), respectively. The phase z increases at the rate of 1/I  as time 
passes and is reset after reaching unity. Thus, it is regarded as the time nor- 
malized by the input per iod/ ,  taking values on the unit circle S = I-0, 1 ]. 

Figure 2a illustrates the waveforms of a sinusoidal forcing term and 
the variable x of the system (11) deprived of the noise (6 =0 )  when a 1:1 
phase locking occurs. In this case, whenever a state point of the system 
returns to the point A --- (7/3, 2/3) indicated in Fig. 1, which hereafter will 
be called the "base point," one can observe the same input phase. Figure 2b 
shows an example of a 1:3 phase locking. At the base point, three distinct 
input phases are in turn observed repeatedly. 

Figure 3 illustrates the waveforms of the variable x of the system (11) 
and forcing term with additive noise. In Fig. 3a, the noise intensity is small 
(6 = 0.01) as compared to the amplitude of the forcing term (M = 1.0) and, 

(a) 
I x oscillator wave form 

input wave form 

(b) I x oscillator wave form 

-2.o r i/. V ~/ v V V 
input wave form 

Fig. 2. Waveforms of x(t) and of input V(t) for the system (11) in the absence of noise 
(e =0.001, 6 =0.0). (a )A 1:1 phase locking, in which the forced oscillator runs one cycle for 
each cycle of the sinusoidal input. Every time a state point returns to the base point (x = 7/3), 
the same input phase is observed. Input parameters are I =  1.7 and M =  1.0. (b) A 1:3 phase 
locking, in which the forced oscillator runs three cycles for each cycle of the input. At the base 
point, three distinct input phases are in turn observed repeatedly. The input parameters are 
I = 8.0 and M = 1.0. 
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in Fig. 3b, the intensity of noise is one-tenth of the ampli tude of the forcing 
term (6=0.1) .  Every time a state point  gets back to the base point,  a 
variety of values of the input  phase can be observed. In Fig. 3c an example 
of a 1 : 3 phase locking is illustrated when the intensity of the noise 6 is 0.1. 
For  one oscillation of the driving term, the oscillator oscillates three times. 
In contrast to the deterministic case, each value of the three input  phases 
at the base point  slightly varies in every third rotation. 

In the presence of noise (see Fig. 3), the period of the self-sustained 
oscillation seems to fall into synchronism with the driving period even 
though the period of the oscillation is varied stochastically and slightly dif- 
fers from the entrained period of the deterministic system. It is appropriate 
to refer to this phenomenon  as stochastic phase locking, in analogy with its 
deterministic counterpart .  In the following, a more detailed discussion of 
stochastic phase locking will be provided. 

(a) . oscillator wave form 

2,0 �9 

0 . 0  . . 0  ,o  . 

[ periodic input with noise 

(b) ix  oscillator wave form 

-2o~ ~fl ~ ~ ~ ~me 
r periodic input with noise 

(c) 
t x oscillator wave form 

-2.0 ~) 

periodic input and noise 

Fig. 3. Examples of stochastic phase lockings. In all cases, M = 1.0 and e = 0.001. Both (a) 
and (b) show 1:1 stochastic phase Iockings. (a)The noise intensity is small as compared to 
the amplitude of the driving term (I= 1.7, 6 = 0.01 ). (b) The noise intensity is one-tenth of the 
amplitude of the driving term (I= 1.7, 6 = 0.1 ). Every time a state point gets back to the base 
point A (whose abscissa is x = 7/3), in contrast to the deterministic case shown in Fig. 2a, a 
variety of values of the input phase can be observed. (c) An example of a stochastic 1:3 phase 
locking (I= 8.0, 6 =0.1). For each oscillation of the input, the oscillator appears to oscillate 
three times. Each value of the three input phases at the base point varies in every third rotation. 
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5. OPERATORS A N D  PDF'S OF THE INPUT PHASE 

Let the state point governed by the system (11) be at the base point 
A (see Fig. 1) at time t = 0 with a particular initial phase 00 of the forcing 
term V(t). If it reaches the point B at time t = t+, the increment of the 
phase is t +/I (mod 1). Therefore, at that time the input phase is expressed 
as O'o=r(t+'Oo)=t+/l+O o (mod 1). It is clear that the input phase 0~ 
is a random variable because it depends on the random variable T+. 
When the state point reaches the point B in region 3, as mentioned before, 
it makes an instantaneous jump to the point C in region 1. Hence, at 
point C the input phase of the forcing term is also 0~. Let the state point 
spend a time interval t_ while it proceeds from C to D. According to 
the above procedure, the input phase at point D can be expressed as 
01 =T(t+ + t_ ;00)= (t+ + t_)/l+Oo (mod 1). This means that after the 
state point returns to the base point A, the input phase changes from 0o 
into 01. 

Let now fr(t; 0o) be the probability density function (pdf) of the time 
interval T corresponding to one cycle of the trajectory starting at the base 
point with an initial input phase 0o. The time interval T corresponds to the 
period of the system (11) and is always measured on the basis of the base 
point A. Let f+( t ;  0o) and f_(t;  0'o) denote the first-passage-time pdf's in 
regions 3 and 1 with the corresponding initial input phases 0o and 0~ of the 
forcing term, respectively. The pdf of the time interval T is given by the 
convolution of f_(t;O'o) with f+(t;Oo) as the initial input phase 0~ in 
region 1 is changed depending on the time interval t+ spent by the state 
point in region 3: 

fT(t;Oo)= f _ ( t - t +  ;0o)f§  +;Oo)dt+ (23) 

O'o=r(t+;Oo) (mod l )  (24) 

In order to describe the motion of a state point in terms of the input phase, 
we transform the pdf of T into that of the input phase as follows: 

g(O; 0o) = ~ fr(t ,;  0o) (25) 
�9 C,,:Ool = o Ir'(ti; 0o)1 

where r'(t; 0) means Or(t; O)/Ot. So far we have considered the fixed initial 
input phase at the base point. We shall now deal with the case when the 
initial phase 0o is distributed on S =  [-0, 1] according to a probability 
density function ho(Oo). Let us denote by ht(0) the pdf of the input phase 



Stochast ic  Phase Locking in a Relaxat ion Osci l la tor  927 

after a state point returns to the base point in one cycle with the initial 
phase pdf ho(Oo). Hence, 

or h, 

t "  

h,(O) = Js g(O; 0o) ho(Oo) dOo 

= Pho, where P is the operator defined by 

(26) 

t "  

Pho(0) = Js g(O; 0o) ho(Oo) dOo (27) 

For any given pdf ho, making use of operator P, it is possible to define h,, 
inductively: 

h, = Ph,_  1 = P(Ph,,_ 2) . . . . .  P"ho (28) 

We conclude this section with some definitions necessary for the 
following discussion. By L~(S) we shall denote the class of functions f on 
the circle S such that 

[If I[ =fs If(x)[ dx< oo (29) 

Then, [If I[ is the LI(S) norm o f f  As is customary, we say that hELl(S) 
is a density if h is nonnegative and its integral over the domain S is equal 
to unity. Let the set ~ of pdf's be defined by 

~ =  {heL~(S);h>~O, Ilhll = 1} (30) 

If P is the operator defined above and if 

Ph* =h*  (31) 

for some h* e 9 ,  then h* is called an invariant density of the operator P. 
We can now define t~31 the asymptotic stability of a sequence of density 

functions {P"ho} in the following way: For every h o sN ,  a sequence 
{P"ho} is said to be asymptotically stable if there exists a unique invariant 
density h* and 

lim IlP"ho-h*ll = 0 (32) 
n ~ o 3  

6. N U M E R I C A L  A N A L Y S I S  

In this section we shall provide two examples of pdf evolution which 
display asymptotic stability and discuss the stochastic phase locking in 
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terms of pdf evolution. In order to obtain the pdf's of the input phase, 
we have made use of a specific numerical procedure ~2) to calculate first- 
passage-time pdf's through time-varying boundaries for diffusion processes. 
For a given initial density ho of the input phase, the pdf sequence {P"ho} 
of the input phase can be numerically calculated in accordance with the 
method outlined in Section 5. The first example presents an asymptotic 
stable sequence of pdf's showing a stochastic 1 : 1 phase locking in terms of 
density evolution. The second example, exhibiting a stochastic 1:3 phase 
locking, indicates that the behaviors of the pdf sequences that converge 
to their invariant densities are quite different from the case of the first 
example. 

6.1. 1:1 Phase Locking 

Figure 4 illustrates the numerically obtained results on the asymptotic 
stability of the sequence of input phase pdf's. This corresponds to the 
stochastic 1 : 1 phase locking shown in Fig. 3. Figures 4a, 4c, and 4e show 
the initial densities and Figs. 4b, 4d, and 4f the corresponding evolution of 
pdf's. For simplicity, only h~, h2, hmo, him, and hlo2 have been plotted, 
while other transient pdf's have been omitted. From the figure we see that 
the relations Ph~oo=h~m and Phlol=hlo2 hold to a very high degree of 
accuracy. Moreover, the figure shows that in each evolution of pdf's from 
distinct initial density functions the sequences of pdf's seem to converge to 
the same density h* with one sharp peak at a certain phase, indicating that 
a stochastic 1 : 1 phase locking occurs. The sequence P"h o quickly converges 
to the density h* independent of the initial density ho. Thus, we are led to 
conjecture that the operator P has a unique invariant density h* and that 
the sequence of pdf's {P"ho} is asymptotically stable. 

6.2. 1 :3  Phase Locking 

Figures 5 and 6 illustrate other examples of asymptotic stability of the 
sequence {P"ho} of pdf's. This case corresponds to the stochastic 1:3 phase 
locking depicted in Fig. 3. Figure 5 illustrates pdf's hloo, hlol, hlo2, and hlo 3 
when the initial density function of the input phase is uniformly distributed 
on S. The operator P transforms functions ga~, ga2, and ga3 (Fig. 5a) to 
functions gb2, gb3, and gb~ (Fig. 5b), and the second iterate of the operator 
P yields go3, gd,  and go2 (Fig. 5c). By the third iterate of the operator, we 
obtain gd~, gd2, and gd3, which are, respectively, identical to ga~, ga2, and 
g,3 to a very high degree of accuracy. Figure 6 shows densities Pl~176 o 
through W~ o with a different initial density, having omitted the transient 
consisting of 99 densities. Although from Figs. 5 and 6, P~~ and P~~176 o 
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(a) (b) 

160.0 

1 (~1.( 

pl~176 
pl~ h - 0 

/ "  p l ~ o  

p2h o 
/ 

/ ~ j ~  Pho 
. . . . .  x:o 0 

(c) (d) 

0.0 0 

160.0 

1(30.0 

0.( 1.0 

pl~176 
. p'~ 

pOOh o 

P~ho 

~ Pho . 

' " 1 " . 0  0 

(e) (f) 

160"0 I 

o:o . . . .  0 . . . .  " o._ o' 

pt~176 

. p'~ o 
.- " plO2ho 

..~: Pho 
p// 

0 ' 1:0 

Fig. 4. Numerical illustration of the asymptotically stable sequence {Pnho}. This corre- 
sponds to the stochastic 1:1 phase locking shown in Fig. 3a. (a,c,e)The initial densities. 
(b,d,f) The densities Pho, P2ho, Pt~176 P]~ and Pl~ o starting from initial densities in 
(a), (c), and (e), respectively. Other transient densities have been omitted. The sequence 
{P"ho} seems to attain a unique density which is independent of the initial densities. The 
parameter values are I =  1.7, M =  1.0, and 6=0.01. 
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Fig. 5. Another example of the asymptotic stability of the pdf sequence {P"ho}. This 
corresponds to a 1:3 phase locking in the presence of additive noise shown in Fig. 3c. 
Pdf's Pte~ho, Pl~ Pl~ and Pl~ o are illustrated starting from a uniform density. The 
operator P transforms functions g,=, g~2, and g,a in (a) into the functions gb2, gh3, and gb~ 
in (b), and the second iterate of the operator P yields gc3, gel, and go2 shown in (c). By the 
third iterate of the operator, we obtain gdl, gd2, and gd3, which are almost, but not exactly, 
identical to gal, gaz, and g~3, respectively. (e) An invariant density, exhibited after a very long 
transient (P"h0, n = 106). Densities have been numerically computed by dividing the interval 
[0, 1 ] on the abscissa into 800 equal bins. The parameter values are I = 8.0, M = 1.0, and 
6 = 0.01. 

look alike, they are not exactly such; indeed, in both cases {P"ho} con- 
verges to an invariant density after a very long transient (Fig. 5e). Let now 
gi ( i= 1, 2, 3)~ ~ be normalized functions obtained from g.1, ga2, and g~3, 
respectively: 

g ,  = goilll g < , , l l  (33) 
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Fig. 6. The strong dependence of the transient densities on the initial density. (a) The initial 
density. Parameter values are the same as those of Fig. 5. Though the pdf sequence seems to 
exhibit a periodicity with period three, the sequence evolves to the unique invariant density 
shown in Fig. 5e after a long transient. 

Then ,  f rom Fig. 5, we see tha t  the fol lowing a p p rox im a te  re la t ion  holds:  

P 3 g i ~ g  i ( i =  1,2,  3) (34) 

Hence,  it is app rop r i a t e  to call gi ( i =  1, 2, 3) pseudoe igenfunc t ions  (of p3). 
Note  tha t  in a strict sense the ope ra to r  p3 does no t  have any  such 
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eigenfunction other than the unique invariant density shown in Fig. 5e 
(cf. Section 7). The numerical examples shown in Figs. 5 and 6 lead us to 
describe approximately the densities {P"ho} (n > N), for any initial density 
ho E @ and large N, by a linear combination of the pseudoeigenfunctions gi 
( i=  1, 2, 3): 

P"h o ~ ct,(ho) gl + fl,,(ho) g2 "l- 7,,(ho) g3 
(35) 

~,,(ho) +/L, (ho)  + ~.(ho) = 1 

where nonnegative coefficients ~,(ho), fl,,(ho), and ~',(ho) depend on the 
initial density ho and the iteration time n. Since Pg, ~ g2, Pg2 ~ g3, and 
Pg3 ~ g,,  

1 ~ 1 1 1 
P(�89 + 3g2+ �89 + g3 g3)~3g~ ~g2+g (36) 

which means that g * =  (gl + g2 + g3)/3 is the approximate invariant den- 
sity. As is seen from Fig. 5e and the conjecture in Section 7, the sequence 
{P"ho} will evolve to its invariant density. Hence, the coefficients ct,,(ho), 
fl,(ho), and 7,,(ho) must approach 1/3 as the iteration time n increases. 
However, as is seen from Fig. 5, the speed of convergence to the invariant 
density of the system is very small; furthermore, such convergence 
significantly differs from that of example (i) even though both examples 
exhibit a unique asymptotically stable invariant density. 

7. D ISCUSSION 

The operator P is defined by the kernel g(O; 0o) in Eq. (27). Since 

g(O;Oo)>>-O, Isg(O;Oo)dO=l (37) 

this is a stochastic kernel, apparently possessing the following property: 

~sinf g(O; Oo)dO>O (38) 
00 

Thus the operator P always has a unique asymptotically stable invariant 
density (cf., for instance, Corollary 5.7.1 of ref. 13). This property, however, 
has not been proved, since the kernel is not known analytically. Indeed, we 
have associated the density evolution of the system to a stochastic phase 
locking, and we have visualized its evolution by means of numerical 
calculations. To this purpose the term asymptotic stability has been used 
even though a mathematical proof is still lacking. 



Stochastic Phase Locking in a Relaxation Oscillator 933 

We have thus proposed a method which enables us to analyze numeri- 
cally the phenomenon of stochastic phase lockings through density evolu- 
tion without having to simulate stochastic differential equations in order to 
construct histograms of the periods of the system. We have also presented 
two examples of stochastic phase lockings, a 1:1 phase locking and a 1:3 
phase locking. In the latter example, the evolution of the density sequence 
{P"ho} had a very long transient and is apparently much different from the 
former example. We gave a crude discussion on this long transient using 
the pseudoeigenfunctions g; which were arbitrarily defined by a numerical 
computation. The long transient of the density evolution is caused by the 
smallness of the noise. Thus the pseudoeigenfunctions can be approximated 
by a Gaussian distribution and we can evaluate the convergence speed of 
the density evolution to an invariant density. We have postponed these 
detailed discussions since the main purpose of the present paper is to 
propose a method for the analysis of stochastic phase lockings based on an 
operator which governs a density evolution. 

In the absence of noise, the forced relaxation oscillator (5) is able to 
show various bifurcation phenomena as input period and/or amplitude 
vary. It41 Using the method proposed in this paper, the effect of noise on 
such bifurcations can be analyzed. 

We finally remark that, as is well known, fluctuations in physical 
systems can be accounted for either in terms of stochastic systems or by 
resorting to deterministic models that exhibit chaotic behavior. In the 
present paper, our attention has been focused on the former. A study of the 
effect of noise in terms of deterministic systems exhibiting chaotic behavior 
is certainly an interesting and challenging task. This, however, will be the 
object of future investigations. 

A P P E N D I X  

In order to make use of the numerical procedure of ref. 12 to evaluate 
first-passage-time pdf's, preliminarily a transformation is applied to the 
system (13). Let 

p +_(z, rL y, t)= ~-~ Pr{ Y+_(r) <~zl Y• = y} (A1) 

denote the transition pdf's of the processes governed by the stochastic 
differential equations (13). The indices " - "  and " + "  indicate regions 1 and 
3, respectively. 
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From Eq. (13), the Kolmogorov (or "backward") equations follow: 

0 -~ p+(z, zl y, t) 

f__f & 0 2 ={H+(z)+V(t)} p+_(z, zly, t)+~y2P+(Z, zly, t ) (A2) 

Applying the transformation 

L Y' = 0(Y, t) = y -  exp( s -  t) V(s) ds (A3a) 

t ' =  ~(t) = t (A3b) 

to Eq. (A2), we find 

0 -~-~ p +(z, t'l y', O) 

~b'(t)l [ aO(y, aO(y, 26 02O(y' t)] 2 t-H+(z) -~ ~y, p +(z, zl y', t') 

6 (dO(y, t)) 2 02 
+ 2 - ~ \  Oy ~y '2p• (A4) 

After calculating the differential coefficients of if(y, t) and 0(t), we finally 
obtain 

a H a ~ 6 a 2 -fffip+_ (z, zly' ,t ')= +_(z)--~y,p+_(_,zl) ,t')+-~y,2p+_(z, zly',t '  ) (A5) 

The stochastic processes governed by the backward equations (A5) are 
equivalent to the processes Y'_(t) and Y'+(t) of Eqs. (19). 
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